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S U M M A R Y  
The problem of the transmission of water waves through gaps in n arbitrary barriers is solved under the 
assumption that both the gaps and the barrier thicknesses are small. Closed-form expressions for the trans- 
mission and reflection coefficients are derived for the special case of n equally-spaced identical barriers and 
gaps. 

1. Introduction 

We consider the two-dimensional problem of the transmission of infinitesimal-amplitude 
surface waves through small horizontal gaps in a series of n parallel vertical barriers of 
small thickness which extend indefinitely down into the fluid from the free surface. It is 
assumed that the gap in each barrier and the barrier thicknesses are of the same order of 
magnitude, each being small compared to the other length scales in the problem, namely 
the incident wave-length, the depth of submergence of the gaps, and the spacing of the 
barriers. The method used to solve the problem is to match inner solutions, valid in the 
neighbourhood of each of the gaps, and describing their detailed geometry, with outer 
solutions, valid at large distances from the gaps, and describing the wave-like character 
of the flow, in an intermediate region where both expansions are assumed to be valid. The 
method was used by Tuck [1 ] for the case of a small gap in a single thin barrier. This problem 
can be solved exactly, on linear theory, and Tuck's results were shown by Guiney [2] to 
agree with the exact result, for low frequencies, even when the size of the gap was up to 
twice the depth of the upper edge of the gap. For large frequencies the approximation 
became progressively worse as the gap size increased relative to the gap depth. 

The effect of barrier thickness was considered by Guiney, Noye and Tuck [3] who showed 
that the amount of energy transmitted was less for thicker barriers. The only modification 
to the solution was that it was found necessary to use a Schwarz-Christoffel mapping to 
solve for the "inner solution" valid in the neighbourhood of the gap, which described the 
streaming flow through a finite rectangular aperture in a wall of finite thickness in an infinite 
fluid, having source-sink like behaviour at infinity. A method equivalent to, but not as 
general as the matching method to be used here, was used by the author in considering 
two thin barriers with symmetric small gaps. It was shown (Evans [4]) that there exist 
configurations for which total reflection of the incident wave occurred. These results will 
be confirmed as a special case of the present problem corresponding to n = 2, with thin 
barriers and symmetric gaps. 
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2. Formulation 

The geometry o f  the problem is sketched in Fig. 1. A surface wave, o f  frequency o ,  is 

incident f rom x = - oo upon  the barriers which occupy the positions Ix - b,I < cr with 
the gaps L, :  [Y - h,l < a,, r = 1, 2 . . . . .  n. The usual assumptions o f  linearised water- 

wave theory ensure the existence o f  a velocity potential ~(x,  y, t) for  the flow. The mot ion 

will necessarily be time harmonic  and so we introduce qS(x, y), where 

q~(x, y, t) = Re{~b(x, y)e-U~ 

Then ~(xl y) is harmonic  in the fluid region and satisfies 

K r  + ~ = O, K = ~ I o  

on the linearised free surface, y = O. 
It  is reasonable to assume that  par t  o f  the incident wave energy will be reflected back to 

x = - 0 %  and par t  will be transmitted th rough  the n th gap towards  x = + oo. Thus we 

shall assume that  ~b N ~o[exp(+iKx - Ky) + R e x p ( - i K x  - Ky)] as x ~ - o o .  and 

that  q~ ,~ c~oTexp(+iKx - Ky) as x ~ +oo .  

The outer solution 
Consider the gap L , :  [y - hn] < an, ix - bn[ < e,. Since both  2an/h. and 2c,/b, are 
assumed small compared  to unity, to an observer who is distance O(h,) f rom Ln, the 

barrier will appear  to be posit ioned on the line x = b. and the flow through  L,  will be 

indistinguishable f rom an oscillating line source at (b,, hn). 
Thus for  x > b n, and for  distances O(h.) f rom L.,  we assume 

r y) = mnG(x, y; b,, h,) (2.1) 
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where G(x, y; br, h,) is the usual infinite depth velocity potent ial  due to a source at  (br, hr) 

benea th  a free surface (Wehausen and  Laitone,  [5]). Clearly, f rom (2.1) ~ / O x  = 0 on 

x =  b., y # hn. 
To an observer  in the region b . -1  < x < b., a distance O{min(d. ,  h., h . - i ) } ,  (where 

d. = b. - b . _ l )  f rom either L .  or  L ._  1, the flow through  the gap  L.  will appea r  to be 
due to an oscillating source posi t ioned at  (b., h.), having strength - m . ,  by  continuity,  
which satisfies the condit ion of  no flow across x = b._ x and x = b.. In  a similar manner ,  

the flow through  the gap L ._  1 will appea r  to be due to an oscillating source at  (b._ i, h._ 1) 
which also satisfies the condi t ion of  no flow across x = b._ 1, b.. 

Thus  for  b._ 1 < x < b., away f rom L.  and L . _ I ,  we assume 

~(x, y) = - m . H ; ( x ,  y) + m._lH+_l(x, y) (2.2) 

where m.  and  m._  1 are unknown  source strengths and H+(x, y) is the potential  due to a 
line source at  (br, h,) satisfying the free-surface condit ion and  also the condit ions 

OH~/Ox = 0 on x = b., b,+ 1. Expressions for  G(x, y; b,, h.) and HT(x,+ y) are given in 
the Appendix .  

I t  is clear tha t  we can write down similar outer  solutions for  b k_ a < x < b,, valid away 
f r o m  the gaps Lk, Lk-1, for  k = 2 . . . . .  n. 

Thus  

r  = - m k H ; ( x , y  ) + mk_lH~_l(X,y), k = 2 . . . .  , n, (2.3) 

where mk, (k = 1 . . . . .  n), are unknown  source strengths to be determined by matching  
with an inner solution valid in the ne ighbourhood  of  the gaps. 

Finally, for  x < bl ,  away  f rom L1, the outer  solution is assumed to be 

r  y) = - m l G ( x , y ;  bl, hi) + A cos K(b 1 - x) e x p ( - K y )  (2.4) 

where a standing wave of  arbi t rary  ampli tude,  satisfying the no flow condit ion on x = bl,  
is included so that  the requirement  of  an incident wave and a reflected wave at  x - - 
is satisfied. 

N o w  G(x,y; b ,  h r ) ~  - 2 n i e x p { - K ( y  + h,) + iKIx - brl} as Ix - b,I ~ oo, so that  
as X---r + 0 %  

r  y)-~ -2h im .  e x p { - K ( y  + h,,) + iK(x - b.)} 

and  as x ~ - oo, 

r Y) ~ +2him1 e x p { - K ( y  + hi)  - iK(x - bl)  ) 

+ �89 exp{iKx - Ky - iKbl} + �89 e x p { - i K x  - Ky + iKbl} 

I t  follows that  

R = (1 + 4ni(mi/A ) e x p ( - K h i )  ) exp(2iKb~) 

and 

(2.5) 

T = -4ni(m. /A)  e x p ( - K h .  - iK(b. - b,)). (2.6) 
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The inner solution 

Consider the flow in the neighbourhood of the gap L i, i = 1, 2, . . . ,  n. To an observer 
positioned in the gap, the influence of the free surface will be negligible and the upper part 
of the barrier will appear to extend to infinity. In this inner region, therefore, the solution 
is required to the problem of potential flow through a finite rectangular aperture of width 
2a~ in a wall of thickness 2e~, the fluid extending to infinity in all directions. The solution 
to this problem is made unique to within a constant by requiring source-sink type behaviour 
at large distances either side of L~. 

This problem has been solved by Guiney, Noye and Tuck [3] in the course of determining 
the wave transmission through a gap in a single barrier. All that is required is the behaviour 
of the potential at large distances either side o f L  v Thus we find that as r i ~ ~ ,  

(a(x, y )  --r m i log r i - �89 i log(k~6 2) + C i for x > bi (2.7) 

whilst 

d?(x, y )  ~ - m ~  log r i + �89 i l og (k i6  2) + Ci for x < b i. (2.8) 

H e r e r  z = (x  - bi) 2 + ( y - h i )  2 , i =  1, 2, . . . ,  n, 

6, = ai / (ZE(kl)  - k~2K(k , ) )  

and K(k l ) ,  E (k l )  are complete elliptic integrals of the first and second kind respectively. 
Also, k, is the positive root of 

ei/a i = K'k~ 2 - 2 K '  + 2E' ) /2(Kk~ 2 - 2E) 

where K'  = K(k'~), E '  = E(k'O and k~ = (1 - k2) ~. Details of this derivation and the 
full solution to the inner problem are given in Guiney, Noye and Tuck [3]. 

The equations (2.7), (2.8) carry into the outer region information about the geometry 
of the inner region via the constants ki, 6~ and C~. We need now to consider the behaviour 
of the outer solution in the neighbourhood of the gaps. 

We find from (2.3) that, as ri ~ 0, for x > bl, 

( a ~ m i l o g r i + m i f l  + - m i + 1 7 ~ 1 ,  i =  1,2 . . . . .  n -  1, (2.9a) 

and for x < b~, 

m + (2.9b) ( ~  - m  i l o g r  i - m i f l  ~- + i+1~i-1, i = 2 , 3  . . . . .  n. 

Also, from (2.4) as r~ ~ 0, for x < ba 

q5 --+ - m  1 logr  1 - m l a  1 + A e x p ( - K h  0 (2.9c) 

and from (2.2) as r, ~ 0, x > b, 

(a ~ m ,  log r, + m,~,. (2.9d) 

Expressions for the cons tants /~ ,  + 77, and e~ are given in the Appendix. 
The expressions (2.9) carry information about the wave-like nature of the flow from the 

outer region into the inner region. All that remains is to match the expansions (2.9) with 
(2.7) and (2,8). 
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We obta in  

- m i f l  [" + mi_ l?+_l = �89 log(k~62) + Ci, 

mifl + - m~+ l?i+ 1 = - �89 log(ki62)  + Ci, 

- m l a  I + A e x p ( - K h l )  = �89 1 log(kl62) + Cz, 

m,~,  = - � 8 9  log(k,6~) + C,. 

El iminat ion of  C~, i = 1, 2 . . . . .  n, gives 

i = 2, . . . , n ,  

i =  1 ,2  . . . .  , n -  1, 

m,(fl  + +f i r -  + l o g ( k , 6 2 ) ) = m i _ 1 7  ~ + m i + l y  +, i = 2  . . . . .  n -  1 

mi(~ l  + fl~- + log(k162)) = mzy + + A e x p ( - K h ~ )  (2.10) 

mn(~ " + fl~- + log(k,6Z)) = m,_~?~- 

where the identity ~+ = ?i+l,  i = 1, . . . ,  n - 1 p roved  in the Appendix,  has been used. 
I t  is convenient  at this stage to  introduce the real constants  P l ,  P,,  q+ and  l~, i = 1 . . . .  , n. 
Thus  we define 

q [  = ?~/(2rc exp ( -  2Kh,)), 

2li = {fl+ + fir- + log(k~f2)}/(Zzr e x p ( - Z K h , ) ) ,  

pl  = i + (a~ + fi~- + log(k~a~)}/(2~ e x p ( - 2 K h 0 ) ,  

p .  = i +  {a, + f l ;  + log(k,62)}/(2rc e x p ( - Z K h , ) ) .  

In  terms of  these new constants  equations (2.10) become 

2l~m, = m i _ i q  f- + m i + l q  +, i = 2 . . . . .  n - 1, (2.11) 

m a ( p i  - i) = m z q  + + A/2~z e x p ( - K h ~ ) ,  (2.12) 

mn(p ,  - i) = m , _ l a  : .  (2.13) 

The  difference equat ion (2.11), together  with (2.13), enables mi, i = 1, 2, . . . ,  n - 1 to 

be expressed in terms of  m,, and  (2.12) together  with (2.5) and  (2.6) enable R and T to 
be writ ten 

R e x p ( - 2 i K b  0 = {mi (p l  + i) - m z q + } / { m l ( p l  - i) - m z q ~ }  (2.14) 

and 

T e x p ( - i K ( b  t - b,)) = - 2 i m ,  exp{K(h l  - h , ) } / { m l ( p  a - i) - m2q +} (2.15) 

I t  is no t  obvious  f r o m  these expressions for  R and T t h a t  ]R[ z + IT[ 2 = 1 as might  be 

expected f r o m  considerat ions of  energy conservat ion,  or  by  an e lementary appl icat ion of  
Green ' s  theorem. However  it can be shown, after  some algebra, tha t  

1 - IRI z = 4q + I m ( ~ a l m ~ ) / l m , ( p l  - i) - mzq+] 2. 

I f  we mult iply (2.11) by hi i, (2.13) by ~ , ,  and take the imaginary  parts ,  we obtain 

I m ( ~ i _ l m i ) q 7  = I m ( ~ m ~ + l ) q  +, i = 2 . . . .  , n - 1, 

I m ( m , _  l m , ) q ;  = Im,] z. 
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Hence 
n - 1  

q[  Im(~lm2)  = Im.[ 2 1-I (q~-/qi-+O 
i = I  

= I m J  exp 2 K ( h t  - h.) 

since from (A.7) 

q~- exp(2Kh~+l) = qi-+~ e x p ( 2 K h l ) ,  i = 1, 2 . . . .  , n - 1, 

and so IRI z + IT] 2 = 1. 

S p e c i a l  cases 

If  n = 2, corresponding to two barriers, then m 1 = (P2 - i ) m z / q ~  and we obtain 

R e x p ( - 2 i K b ~ )  = {(p~ + i)(p2 - i)  - q ~ q ~ } / { ( p ~  - i)(p2 - i)  - q + q 2 }  

and 

(2.16) 

T exp ( iKd2)  = - 2 iq2  exp ( K ( h  1 - h z ) ) / { ( p l  - i)(p2 - i) - q+ q2 }. (2.17) 

It can be seen from the expression for T that the transmission coefficient vanishes if q ;  = 0, 
or equivalently if Yz - 7~ = 0. Referring to the Appendix equation (A.7) it follows that 
T =  0 provided H + ( b 2 ,  h 2 ) = - H ; ( b l ,  h i ) =  0. In other words the potential due to a 
source at (bl, hi) beneath a free surface, and bounded by the rigid walls x = bl, bz must 

vanish at the point (bz, h2). 
The special case of  symmetric gaps in barriers of zero thickness has been studied by the 

author using an alternative approach [4]. In that case hi = hz -- h, bl = b2 -= b so that 
the condition T = 0 is satisfied if 7 = 0 where 7 is given by equations (A.10). This con- 
dition agrees with that obtained in [4], where it was also shown that the equation 7 = 0 
has an infinity of solutions. The solutions occur, however, for values of the parameters 
of the problem for which the transmission coefficient is very small anyway and they are of  
little physical interest. The expressions for T and R can also be shown to agree with those 
obtained in [4] where curves showing the variation of  T with K h  for different values of 
2b/h  are given. For  n = 3 we obtain for T the expression 

Te'r(b~-b~) = - - 2 i q 2 q ~  er<Ol-h3)/[{212(p3 -- i)  -- q ~ q + } ( P l  -- i )  -- (P3 -- i ) q 2 q ~ ]  (2.18) 

and it is clear that for n > 3 the expressions for R and T become more and more unwieldy. 
It is noticeable from (2.18) that T = 0 if either q ;  or q~ vanishes, so that for three 

barriers an additional set of transmission-free configurations is possible, corresponding to 
the potential due to a source at (b2, h2) bounded by the rigid walls x --- b2, b3, vanishing 

at (b 3, h3). 
It is possible to obtain relatively simple expressions for R and T for the special case of  

n equally-spaced barriers with symmetric gaps. In this case the solution to the difference 
equation can be expressed in closed form for arbitrary n. Let the width of each barrier 
be 2c, the size of  each gap be 2a, the depth of each gap be h and let the barriers be a distance 
d f rom each other. Then for i = 1, 2 . . . . .  n, we have az = a, c~ = e, hi = h, d~ = d, b i = ib, 

k ~ = k ,  say, a n d 6 ~ = 6 ,  say. T h e n ~ - - ~ ,  fl~ = f l ,  7 + = 7 ,  q+ ---q, l ~ - - l a n d p ~ - - p  
for all appropriate values of  i. 
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The difference equation now becomes 

21mi = q ( m i - 1  + m~+i), i = 2 . . . . .  n - 1, 

with 

m,,(p - i)  = m , _  lq  

and 

m l (  p - i) = m2q + (A exp K h ) / 2 m  

The equation (2.19) may be solved by standard methods. Thus, let 

[l/ql = I cosh 0, ll/ql >= 1, 

t cos0,  If~q] < 1. 

Then it can be shown that the solution of (2.19) which satisfies (2.20) is 

m~ = m , { ( p  - i ) s ,_ i  - q s ,_~_ l } /qs l ,  i = 1, 2 , . . . ,  n, 

S k 

where 

sinh kO, I/q > 1, 

sin kO, 0 <= l/q < 1, 

( - -  1) k sinh kO, I/q < - 1, 

( -  1) k sin kO, 0 > I/q >= - 1. 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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G(x,  y; bi, h~) = -2~zi e x p { - K ( y  + h 3 + i K  Ix - bil} + #(x, y; b~, hi) 

The velocity potential G(x,  y ;  bt, hi) due to a line source at (bi, h,) beneath a free surface 
is well known (Wehausen and Laitone [5] and may be written 

Appendix 

It follows from (2.5) and (2.6) that 

Texp { iK(n  - 1)b} = - 2iqs i / { (  p - i )2s ,_  ~ - 2(p - i )qs ,_  2 + q2s , -  a) (2.23) 

whilst 

R exp ( -  2iKb)  = 

= {(p2 _1_ 1)s,_i _ 2pqsn-2  + q2sn -3 ) / { (p  - i)2sn-1 - 2(p - i)qsn_ 2 Jr q2sn_a}. (2.24) 

Expressions (2.23) and (2.24) embody the main results of  this paper. The transmission 
and reflection properties of  n symmetrical barriers each containing a small gap are expressed 
in terms of three constants p, q and, through (2.22), I. It is seen from the Appendix equation 
(A.11) to (A.13) that p, q and l can be written in terms of tabulated functions and rapidly 
convergent infinite series which may easily be computed. 
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where 

9(x, y; bi, hi) = 

2 (  ~ {k cos k(y + hi) - K s ink(y  + hi)}e -klx-b'l dk 
log(r~~) (A.1) 

30 k 2 -~- K 2 

2 .i "| (k cos ky - K sin ky)(k cos khl - K sin khi)e-kl~-b,f 
0 k(kZ + K2 ) dk (A.2) 

and where ri = {(x - hi) z + (y - hi)2} +, r'i = {(x - bi) 2 + (y + hi)2} ~. 
As r i ~ 0, f rom (A. 1) 

G(x, y; b~, hi) = log r i + ~ + o(1) 

where 

~i = - log 2hl + 2(Ei(2Khl) - rci) exp( -2Khi )  (A.3) 

where 

Ei(x) = f ~  | t-letdt" 

We define + HF(x, y) to be the velocity potential due to a line source at (bi, hi) under a free 
surface and bounded by the rigid walls at x = bi, bi+ 1. Then OH+/3x = 0 on x = bi, hi+ 1 
and H+(x,y)  is defined for y > O, b i < x <_ bi+ ~, i = 1,2, . . . , n  - 1 whilst H~(x ,y )  
is defined f o r y > 0 ,  b i_1 <=x<bi ,  i = 2 , 3 , . . . , n .  

It follows, by using (A.1) and (A.2) and the method of  images, that  

H+(x, y) = G(x, y; b i, hi) + 2~e -my+h')+iKa~ cos K(x - b/)/sin Kd i 

2 I  ;~ e -ka~ cosh k(x - b~)(kkCOSsinhkYkdi( K sin+ ky)(kK2) COS kh  i - K sin khi) dk (A.4) 

= 2roe -r(r+h') cos K(x - bi+ 1)/sin Kdi 

- 2 ~ o  (kc~176176 sinh kdi(k z + K 2) dk. (A.5) 

Here di = bi+l -b~ .  The function HT(x ,y )  is the same as (A.4) with di replaced by 
d~-i or (A.5) with di replaced by di_ 1 and hi+ 1 replaced by hi_ 1. 

As r~ ~ O, 

H+(x, y) = log r i + fl+ + o(1) 

where 

fi+ = o: i - 2 Q~ u e-kdi(kk s~nhnhC~ ~[(~kh i - K+ sinK2)khi) 2 dk + 27ce - 2Kh*+iKd' cosec  Kdi, 

i =  1 , 2 , . . . , n -  1. 

Similarly, HT(x, y) = log r, + fi~- + o(1) as r i ~ 0 where fl/- is fi+ with d i replaced by 
d,_ a for i = 2, 3 . . . . .  n. Notice that  fl, is real. 
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Finally, we define ~ -- H~(bi+_ 1, h i •  so that  f rom (A.5) 

~+ = 2~c e x p { - K ( h  i + hi+l)  } cosec K d  i 

2 ~~176 (k cos khi+ 1 - K sin khi+ O(k  cos khi  - K sin khi)  

Jo k sin kd i (k  z + K z) 

and also 

V+ = 7~-+1, i =  1 , 2 , . . . , n -  1, 

dk  (A.6) 

(A.7) 

thus verifying the reciprocity relation for  symmetric Green 's  functions. 
For  the special case o f n  identical equally spaced barriers and gaps, h~ = h, a~ = a, d~ = b, 

for  i = 1, 2, . . . ,  n, and so fl{ = f17 --- fl, independent  of  i, where 

j ,o~ e - e b ( k c o s k h  _ K s i n k h ) 2  
fl  = O~ + 27ce -2Kh+IKb cosec K b  - 2 dk (A.8) 

0 k sin k b ( k  z + K 2) 

and 

= ~ = - l o g  2h + 2 e - Z r h ( E i ( 2 K h )  - z~i). 

Also 7 + = V~- = ~, independent  o f  i, where 

f | (k cos kh  - K sin kh)  z 
y = 2xe  -2Kh cosec K b  - 2 

o k sinh k b ( k  2 + K 2) 

(A.9) 

a~. (A.10) 

This expression for  7 also occurs in Evans [4] where it was shown, using contour  integration, 
that  it could be replaced by a simpler expression which did not  involve infinite integrals. 
The  expression for  fl can be treated similarly so that,  with q+ _= q, 

q = ~/2zc exp ( -  2Kh)  

{1 
- 2~2b 2re logcosh  - i f -  - , = 1  

and with l~ - l, 

l = (2fl + log(k6Z))/Zrc e x p ( - 2 K h )  

_ f oo e x p ( - 2 n ~ h / b )  
1 I log(s inh(Tzh /b) / ( z th /b ) -  ~, 

2 K b  2z~ n= l nn - K b  

( -  1)" exp ( -  2nT~h/b) ) / . . . . . .  

1 log(2h/k~6) ~ / e x p ( -  2Kh) .  
2re J 

(A. 11) 

(A.12) 

Finally, with Pl  --- Pn ---- P, 

p = i + {c~ + fl + log(k62)}/2rc e x p ( - 2 K h )  

1 _ 1 
= l + - -  E i (2Kh)  - - -  

z~ 2~ 
exp (2Kh). log (2h/k~6). (A .13 )  

Notice that  p,  q, 1 are r e a l  
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